
CGNS++ Design Document

Manuel Kessler∗ Udo Tremel†

15th February 2002

Abstract

We propose a new and improved interface for the CGNS library to be used with
the C++ programming language. We explain some of the decisions made in the
design process and later on while implementing.

1 Motivation

The design of a new wrapper to an existing library for a new language is a delicate task. On
one hand, there is often already a way to access the functionality of the library (as is the case
with C++, which is able to use the C interface of the CGNS midlevel library), and therefore
many people may use the library already and are accustomed to some idiosyncracies and
idioms for clever usage. For those people a more compatible interface is preferable. On
the other hand, a new language provides new features to help the programmer get her job
done, so it is a waste of time and effort not to use advanced features which support good
programming style and aid in debugging.

We are convinced that the existing C and Fortran interfaces are well designed and the
library is nearly bug free. For the foreseeable future they probably will be used from most
people using CGNS, and therefore they definitely should be maintained and enhanced as
necessary. But some people use already other languages for application development, most
notably C++ (and possibly some others, like Python). Of course it is possible — and people
have done so — to use the existing C interface in a C++ application, but this approach
has some drawbacks. In fact, one is forced to use only a small subset of the language in a
considerable part of the whole application. But why should we then bother using C++ in
the first place.

Therefore we decided to design and implement a completely new object oriented inter-
face to CGNS. It seemed as a waste of time to repeat only the C interface with C++ syntax
and some small adaptations. People uncomfortable with a new interface and familiar with
the existing C one may of course use it as they like. Others can use the new interface and

∗University of Stuttgart, IAG
†EADS, Military Services

1



benefit from the features provided: more safety against accidental misuse (e. g. mix–up
of identification numbers), less programming effort to achieve the desired result, and a
completely object oriented interface more suitable in an object oriented application devel-
opment.

Probably the most important bonus from using an advanced programming language like
C++ is the automatic handling of many recurring tasks, like initialisation. For example,
in the existing midlevel library you can easily try to access some zone data before actually
initialising the zone itself. Of course, you will get a runtime error if you do it, but then
several hundred expensive CPU hours on a supercomputer may be wasted (even worse, if
you do not check error values everywhere, such a bug can slip through unnoticed for a long
time). In our current approach, if you have an object of type Zone, it is always properly
initialised, either by reading from a file or by creating it recently. Without a Zone object it
is syntactically impossible to get at the data below, so if we try, a compilation error occurs.
And it is enough to pass only one object to a function or subroutine doing some I/O, not
several plain integer identification numbers, possibly of varying count.

Each object is responsible for a consistent structure and data in its subnodes. As far as
possible, this consistency is enforced at compile time or link time (of course, some checks
have to be postponed until runtime). Thanks to overloading we can make available many
different flavours of the same function, with identical semantics, but different interfaces.
For example, in the class DataArray there is a function readData, which is responsible for
the actual data access. There exist many variants, to read into a bunch of integers, floats
or doubles, with several striding capabilities, in several dimensions. They all read the data
from the disk file, so it is sensible to name them identical, but depending on the data struc-
ture of the application, the actual read has to be done differently. So overloading reduces
the learning time (only few function names and their semantics have to be remembered)
while allowing a high flexibility (many different variants implement the semantic interface).

Unfortunately, as we had to learn from earlier experience, it is very difficult to imple-
ment such an interface as a simple wrapper on top of the existing midlevel library. The
most problematic point is that is is not object oriented at all. While the SIDS specification
may be easily used to conceptually map the nodes to objects, this is not the case with the
midlevel library. There is no such thing as a single object identity for any of the nodes.
For every SIDS node one needs a bunch of numbers, for example a simple solution field is
accessed using the file, base, zone, solution and field numbers. Even worse, for nodes which
can be attached to several parents, e. g. the DataClass, one has to use the cg goto function
with a string representation of the path down to the desired node. It is nearly impossible
to handle this in a general, safe and consistent way. One can see this in the existing imple-
mentation, where much functionality like validity checking is duplicated again and again.
Because of this, we opted in the process of implementing for a different approach, namely
a new library parallel to the existing one, implemented in C++ and on top of (a simple
OO wrapper on top of) the ADF library. As far as we can see right now, where about half
of the midlevel library functionality is implemented already, we did not need more time or
effort than a conservative estimate of the alternative approaches would give.

2



We point out that the proposed library is functionally equivalent to the midlevel library,
with syntax and semantics appropriately adapted for the C++ language. It is not a high
level tool to manipulate CGNS databases in general (like arbitrarily moving and copying
nodes etc.). Such tools may be built with the aid of our library, of course, the same way
they could be built with the midlevel library.

2 Language

There are several basic design aspects to consider at the very beginning, since they influence
the whole process. One is the above mentioned decision to build really a new interface,
not a cosmetic variant of an existing one. Another one is the programming language to
use. While C++ was intended, still several possibilities exist. The language is relatively
(compared to C or even Fortran) new, and some older compilers lack important features,
like templates, namespaces and exception handling or the standard library specified for the
language, or more esoteric ones, like Koenig lookup or exported templates. However, there
is now the ISO 14882 standard since the end of 1997, and the features most people use
sensibly have settled since 1994 or earlier. So decent compilers should not have problems,
and older ones should be dying out slowly.

Now a very feature–rich programming language is at our disposal, but we have to decide
what to use and what not. In CFD performance is one of the most important aspect of an
application, so if a feature does hinder performance too much, we should not use it. But
as often, this is a difficult engineering decision, since compiler (and hardware) technology
evolves rapidly. We have to draw a line somewhere and fix the ideas (in no particular
order):

• Templates are being used in the implementation, but don’t appear in the interface.
The latter is a simple consequence, since there seems to be no good use for it. The
usage of templates in the implementation helps with development, because many
similar tasks can concentrated in a single place and used in many different contexts,
where they have not to be duplicated again and again (with the corresponding main-
tenance effort). Template technology is now quite mature, and even newer features
like typename and traits are known for a long time now. However, we don’t use
template template parameters (they are not needed anyway).

• Namespaces are used as well. Technically they are not really necessary, but there is
hardly any compiler with no basic support for it. We don’t think anybody is taken
out by this decision alone.

• Exceptions are a clever way of error handling. There is much discussion whether
they should be used or not, especially in the area of high performance computing.
We decided to do so, but in a way not to rule out alternatives (by concentrating the
exception machinery in a single place). There is more to be said about this topic
later on.

3



• The standard library is used, wherever appropriate, and in the standard way. Stan-
dard library support is still evolving on many systems, but the parts we use —
mainly the auto ptr template and some containers — should be available everywhere.
If experience proves that this is not the case, the relevant parts may be changed or
replaced without too much hassle.

• For names we use the standard string class in the interface. The string class helps a lot
in the implementation, because we do not have to bother with memory management
for character arrays. This is even more important since we use exceptions. And if
we use it in the implementation, why not in the interface? For string literals (or char
* in general) there exists an implicit conversion constructor to std::string, so this is
not a problem in user code for parameters. For return values the user can easily call
the c str() member function to get a const char *, if necessary. String support in
compilers usually is quite good, at least for the plain char variant.

• We do not use virtual inheritance. It may have been useful to simplify some parts of
the implementation, but we found other ways to express our design without having
to resort to multiple inheritance and the then needed virtual inheritance. Thereby
we reduce the conceptual complexity of our interface a little bit. Our alternatives are
also slightly better for performance, but the difference is probably hardly measurable.
Finally, compiler support is sometimes flaky, namely on the development platform.

Now we come back to error handling. Basically, there are two ways used in most appli-
cations to handle error situations: simply abort (after dropping an appropriate message),
which is a sensible way to go for batch applications, or try to recover up to the point where
the error may be resolved, and the action restarted. The latter is more useful (or even
indispensable) for long running interactive applications. We support both styles. If you
know and do nothing about error handling, and an error occurs in the library, which results
in an exception being raised, the standard procedure is to finally abort the application.
Fine. If you enclose your main() function (respectively the body) with a try block, you
can catch exceptions raised by the library (and others) and at least write a message with
some more specific information. This is better, since it adds less than ten lines of code to
the application in total and is much more informative than a core dump. However, it is
possible, of course, to enclose any call to the library with a try block, and act appropriately
if an exception is catched. That way a total control over each and every call is possible,
but it is also possible to guard many related calls with a single try block. Therefore the
granularity of error handling and the corresponding actions is totally left to the user.

The existing midlevel library gives an error flag back. While it is possible to check every
call as well, all this must be made by hand, but with exceptions the compiler takes care
of tidying up if an exception occurs. Another argument is performance. It is possible to
compile (nearly all) code using exceptions without any runtime overhead, if no exceptions
are thrown, and many compilers do so already. If an exception is actually thrown, the
(hopefully highly optimised) runtime system takes care of the necessary actions. If error
codes are used instead, the status has to be checked explicitly by the user after each and

4



every call. So exceptions give us the power of fine–grained error checking, but have the
flexibility of a less detailed handling, and do not hinder performance.

For systems where exceptions are not available, it is possible to disable them at compile
time and to revert to an error handling by aborting (after dropping a message, of course).
While in this case no fine–grained handling is possible, this situation probably happens
rarely. After all, on nearly all workstations, which may be the kind of systems used for
interactive applications, decent compilers exist, at least the GNU one.

The last statement holds as well for the other features required. On all major worksta-
tions decent C++ compilers exist, and if not the GNU compiler is available in one version
or the other. So there is no need to cripple a new interface intended to be used for some
time to come with workarounds or suboptimal solutions because of obsolete tools.

3 Semantics

Before implementation can start the library as a whole has to be designed with some basic
semantic properties used consistently. The intended use of the library gives valuable insight
into a properly designed interface.

3.1 Object Mapping

The first decision is the mapping between the SIDS specifications and actual C++ objects.
It seems obvious that every SIDS node corresponds to a C++ class object, but it is not the
best way to choose a direct 1:1 mapping between a C++ class object and each ADF node. To
be more specific, many ADF nodes only hold a single value, and some of them are required
if their parents are present. For example, the Descriptor t subnode does only hold a string
of text, or the ZoneType t subnode holds an enumeration value (string) and is required for
each zone. It is not necessary to handle them the same way as the hierarchical nodes, and
more sensible to provide access to them in the particular parent node. Our design therefore
assigns C++ classes only to nodes where child nodes are allowed or required by the SIDS,
but simple subnodes representing only single (or — as e. g. Rind t — a small fixed number
of) values are handled in the parent node classes.

Wherever possible, enumerations are used for the plain value nodes instead of plain
strings, which have to be parsed in the application anyway. Instead, the library handles
the parsing (possibly more efficient, certainly more reliable) and user code is simplified.
The only exceptions are user–defined data arrays, which can be named arbitrarily (as long
as no name collision happens).

3.2 Object Semantics

Probably the most difficult job is to define semantics for the classes. Basically it is possible
to give them value or reference semantics. For example, if we copy an object with value
semantics (like the builtin types, as int or double), a new distinct object is created which

5



can be used completely detached from the original one. If we change one object the other
one is not affected. On the contrary, if we copy a reference, we create only a new handle to
the underlying existing object. If we change it through one reference, the change is visible
immediately through the copied one. If we want to have a “real” duplicate (if this makes
sense at all) we have to call a special function to do the job, which returns a new handle
to the just copied underlying object.

The discussion is language specific. In C, for example, objects (the builtin types, structs
etc.) have value semantics, and you have to explicitly use a pointer if you need a handle.
In many other languages, like Java or interpreted ones like Perl or Python, all object are
basically references to some underlying data. In the latter case the reference counting
mechanism and some kind of garbage collection are handled automatically by the system.
In contrast, in C++ the programmer has the choice, since the basic operations construction,
copying, assignment and destruction are accessible to her and may be given arbitrary
semantics. As a drawback, if we need reference counting, we have to do it ourself.

Since objects definitely need some semantics, we have to think about it, even if we
simply choose to disable copying and assignment explicitly. Otherwise the compiler would
create default copying and assignment functions, which may not behave as desired. So
what are the arguments for one scheme or the other.

Looking at the existing midlevel library, the library is responsible for the data handling,
not the application, and the user is concerned only with a handle to the data, namely the
“bunch of index numbers”(fileNo, baseNo, zoneNo, ...) mentioned earlier. This corresponds
closely to the notion of “the data is in the file”. The midlevel library caches part of this
data, mostly the structural content, but this is not visible from the interface. It could as
well read any data as requested. It sounds sensible to mimic this approach.

Another approach is by thinking about copy or assignment semantics. What does it
mean to make a copy of e. g. a zone? Should all the data in the existing zone duplicated?
If yes, we should at least give the new zone a distinct name. Under which base should it be
placed? The same one as the existing zone? None? Then most of the data, at least most
of the large arrays, are useless anyway since two zones in one base hardly use exactly the
same coordinates, for example. Assignment is even worse. Should the existing structure
and data be disbanded or merged with the assigned one? If there are conflicts, which one
takes precedence? What happens if we assign an unstructured zone to a structured one?
These operations — if needed at all — definitely are up to the application, and not to the
proposed library.

Clearly copying and assignment are at least problematic to define sensibly with value
semantics. On the other hand, if we use reference semantics, copying and assignment are
trivial, since they only create new handles to existing objects (or reassign handles to other
existing objects). The library should provide only functionality to access the data, and is
not a tool to manipulate it (besides the writing capabilities for the SIDS nodes).

In conclusion, reference semantics for the user visible interface are the right way to
implement the database design specified by the SIDS. This decision is similar as for the
existing midlevel library, defines clear semantics for copying and assignment and makes for
safe use.

6



Nevertheless, we are not entirely finished with this topic yet. While the semantics are
clear now, some syntactic and minor semantic issues are still to clarify. Should we use
the builtin C++ references to represent the semantics or should we create handle classes,
which hide the mechanics of dereferencing the real data? In user code, the only difference
is a simple & sign present in the declaration of an object or not. So this seems to be a
minor point. But there are some consequences to consider. If we use plain references, the
real classes containing the real data have to be specified in the header files, together with
the access functions. From a data abstraction viewpoint this is unnecessary clutter in the
user (programmer) visible interface. Furthermore, it requires a complete recompilation of
the user application whenever some internals of the library are changed. This is usually
not a problem for an in–house application, but if a third–party library is available only
as object code compiled with an outdated version of the CGNS++ library things become
difficult. Another point, which is a safety issue: if nodes are to be deleted, the problem of
dangling references occurs. This may lead to subtle and hard to find errors.

On the other hand, if we create handle classes, the interface is kept to the minimum
and the real objects containing real data can be hidden easily. The user code cannot see
them and does not have to, since any access goes through the handle class. Since the
binary representation of the handle class remains stable for a much longer time than a
single version library itself, a linking step to a new version is enough to upgrade. If we
finally use reference counting for the real objects, no dangling references can occur. If we
access a node which has been deleted before, an exception is thrown. Such a reliable action
is definitely preferable to the erratic possibilities of undefined behaviour, namely using old
data, overwriting accidentally other useful data (or even code) or just aborting.

To sum it up, all SIDS nodes possibly containing children are modelled by C++ handle
classes. Copying them just duplicates the handle, which is a simple operation and therefore
very useful even for function parameters or return values. Existing handles to deleted nodes
show defined behaviour, namely throwing an exception if used. We decided to explicitely
disallow assignment, since in contrast to copying we cannot imagine a sensible use for it.
If somebody convinces us otherwise, implementation is next to trivial.

3.3 Child Handling

Another issue is the handling of the different children of a class with different cardinalities.
For optional singular children we choose to expose a hasXXX function, which returns the
availability of the child in question, and a getXXX function to return a handle to it. In
the latter case, if the child requested does not exist, an exception is thrown. There are
not many sensible alternatives to this approach. If we take DataClass as an example, this
would translate into a hasDataClass() function and a getDataClass() function.

Things are slightly different for children with an arbitrary cardinality. We decided to
provide a function that returns the number of children of this kind, getNumXXX, and an
access by name, getXXX(name) to get a handle to the specified child. Again, an exception
is thrown if not available. But that is not sufficient. Often the names are unknown or
irrelevant, we just need a way to handle every child of some kind. For example, zone names

7



are usually quite arbitrary in a solver application, which just has to solve the equations in
all zones. Therefore we added a way to iterate over all children of the requested kind, by
providing an iterator to the first one (beginXXX) and past the last one (endXXX). They
can be used in the spirit of the standard template library of C++ (STL) to handle for
example all zones of a single base. Technically, they have forward iterator semantics. We
do not consider it necessary to enrich the iterator semantics with more functionality, simply
iterating over all children should be sufficient.

Like access, deletion (deleteXXX) is possible either by name or by an iterator. Of course,
after deletion the iterator becomes invalid. However, other iterators remain valid if children
are deleted or newly created.

Child creation does not pose many problems. If there are required data values or child
nodes, they have to be specified at the creation call (writeXXX), and the ADF structure is
built accordingly. If there exists already a child with the name specified (or dictated by
the SIDS), this child is cleaned from any previous subnodes and data and the new data is
applied. The existing midlevel library handles this case in the same way.

Since linking capabilities are currently in the implementation stage for the midlevel
library, we have to include them as well. They will be addressed as soon as the functionality
offered by the midlevel library is fixed. We do not anticipate any problems in supporting
linking. The same holds for user defined data arrays, which are to be implemented as well.
In general, the addition of new child nodes is as simple as generating two short files for the
functionality of the child nodes (mainly by copying and slightly adapting an existing file),
adding the declaration of the node in the main header file and a macro invocation in each
of the possible parent nodes.

3.4 Hierarchical Access

The SIDS document specifies for some entities scope and precedence rules within the
database hierarchy. These include FlowEquationSet, ReferenceState, DataClass and Dimen-
sionalUnits. Basically it is stated, that if they do not exist at the current level (which may
be, for example, a DataArray node representing CoordinateX), we have to look in the parent
node, and if there is none as well, proceed to the next higher level. This is cumbersome to
remember and handle in practice. Although the use of globally applicable data is probably
most common, more complex scenarios with local overriding are explicitly allowed as well.
Therefore it is quite convenient to have a function which returns for example the DataClass
applicable to a given node, wherever this DataClass may be encountered the way up in the
hierarchy. This is implemented in a way such that each node possibly having such flexible
nodes has a pointer to its parent node, where it can ask the information if necessary. If
there is no applicable node at all present in the database, an exception is thrown. In this
case, the description of the data is incomplete anyway and the interpretation of such a
database is up to the application (including the refusal of it or falling back to a default
description).

8



3.5 Data Access

For the actual access to the large data arrays complete functionality is provided. For
the storage of the data in a specific application there are plenty of possibilities, including
sophisticated container libraries. It would be impossible to support them all. In order to do
so anyway, the emphasis is on writing and reading to and from raw memory. Fortunately,
nearly all usable libraries provide a way to get at a raw memory pointer, where the data
is stored. If data access with raw memory pointers is fast and easy to use, the actual
I/O calls are pretty painless. The only (currently anticipated) exception is support for
one dimensional standard C++ vectors or containers with equivalent interfaces. There are
simple wrapper templates which handle the conversion to and from the raw data pointers,
which make the interface slightly more comfortable.

First there are simple methods to read the complete data into a given memory area. If
necessary (and sensible), these provide data conversion between different data type sizes,
like I4 ↔ I8 or R4 ↔ R8. Additionally, instead of writing into raw memory, it is possible
to use an output iterator as destination, which enables the use of higher level containers
for the data. Next, it is possible to read arbitrary slices, hyperplanes and subsections
from the ADF file into memory, which is especially important when doing multigrid or
domain decomposition. The strides and positions can be specified for the file and memory
independently. This enables the application to handle for example the different array
conventions in C++ and Fortran already at the I/O time, without having to transpose large
data arrays in memory later on. Finally, we want to extend the data access capabilities to
read the content in arbitrary dimensional units, which enables unit conversion on the fly.
It will be possible to read the data in e. g. SI units, even if it is stored in the ADF file
in pounds/feet/seconds/Rankine/degrees. The necessary factors are built into the library,
which takes care of the exponents and automagically applies the correct conversion.

The writing capabilities mirror exactly the reading capabilities. The only exception is
unit conversion on the fly. If there is enough demand, this could be added easily.

3.6 Database Handling

The CGNS++ library handles access to the underlying ADF database through a thin OO
layer on top of the existing ADF library. This is not strictly necessary, but it simplifies
many issues with memory management and gathers common operations through a simple
interface. The OO layer is implemented with the same design decisions as written above
including the implementation language used and handle semantics for the node class. Cur-
rently this layer is not strictly an ADF only layer but includes some functionality to help
the CGNS++ implementation. With other database systems in mind it might be preferable
to restrict the layer to the ADF functionality and add an additional one providing CGNS
specific services. This could be done with only trivial changes to the CGNS++ library
itself.

Since binary compatibility is an important point in using CGNS, other database layers
are currently not an option. However, if there should be demand, for example to handle

9



parallel access, this OO layer could be set on top of any database management system,
which provides the necessary services. These include the representation of the data as a
directed graph, the notion of a name and (some kind of) a label for each node, and the
possibility to store binary data of different types and dimensions in each node.

One possibility could be HDF5, which maps quite nicely to the required database struc-
ture. It provides parallel I/O and support for threaded applications. The future will show
whether it provides all the features needed by the community, whether an enhanced ADF
library will be more appropriate or something entirely different. We anticipate the porting
effort to HDF5 (or a similar database layer) to be less than a week. This porting might
be combined with the separation of the ADF++ layer itself and the CGNS utility services
mentioned above.

4 Syntax

The syntax of the library is in this early stage not very important. The names of classes
and methods are still subject to change, as they reflect personal coding styles and taste.
Our current suggestion is a little bit based on the conventions in the SIDS and to a lesser
extent in the existing midlevel library.

• Classes which represent SIDS nodes are named as in the SIDS, but without the trailing
t. Examples include Zone, GridCoordinates, FlowSolution. A notable exception is

Base, which is named CGNSBase t in the SIDS specification. Since the library lives
in the CGNS namespace, the CGNS seemed to be redundant. The same naming
scheme applies to the nodes represented as simple enumerations or trivial structs,
like DataClass, GridLocation or IndexRange.

• Enumeration types are named in the same way as classes. In contrast, the enumera-
tion values are written in capitals, using underscores for word separation, for example
I FACE CENTER, TETRA 4 or NORMALIZED BY UNKNOWN DIMENSIONAL. This
is partly inconsistent with the SIDS, where nearly all enumeration values are in mixed
case, but even there for example the ElementType t values are named like ours. As we
regard the enumeration values as quite different from types, we consider a different
naming scheme as helpful.

• The iterator types necessary to access multiple child nodes are contained within the
parent class and named as the child class with an iterator t suffix. For example, a
Base contains a typedef (to the actual opaque iterator type) Zone iterator t, and zone
contains a FlowSolution iterator t. The iterator type has the usual forward iterator
semantics and supports copying, assignment, comparison, advancing and dereferenc-
ing.

• Access methods for optional children are named as follows. For a child of type
XXX there is a method named hasXXX, which returns whether such a child node

10



exists, a method getXXX which returns a handle to the corresponding child, a method
writeXXX, which possibly takes some required values to construct the child node and
returns the new child, and finally deleteXXX to get rid of it. If we try to call getXXX
or deleteXXX while there is no such thing, an exception is thrown. Nodes having
possibly subnodes with hierarchical scope additionally have a method hasLocalXXX,
to ask if the information is local to this node or looked up further up the hierarchy.

• For children with arbitrary cardinality there are several methods as well. If the type
of the children is again XXX, we have getNumXXX, which returns the number of
children of this type, and getXXX, which takes a name and returns the child with the
given name of the correct type. Iteration is supported through the methods beginXXX
and endXXX, which return an iterator to the first and one past the last one. To create
children there is a function writeXXX, which takes the name and possibly required
parameters and again returns the newly created child. deleteXXX again gets rid of
the named child, where instead of a name an iterator is accepted as well to designate
the one to be deleted.

• Modifications of the data in some of the nodes are currently not supported. Of course
this decision is debatable. The reason is that many such in–place modifications
render child node data (or even the child structure) invalid. For example, if the
dimensions of a base are changed, nearly all the data below, especially the large
arrays, are immediately invalid. There is no obvious cause why such a change should
be allowed, and what consequences for the structure below it should have. If we
need such a completely different base, we have to create a new one and fill it with
the necessary details. However, for some smaller nodes, possibly with only trivial
subnodes independent of their parent data, the possibility of change may be more
desirable. More input from users on this topic would be welcome.

These are the user visible choices in the naming of types, values and functions. A discussion
of this scheme is welcome, especially if supported by sound arguments.

5 Implementation

The initial implementation covers the major part of the SIDS document. At the moment,
Base, Zone, FlowSolution and GridCoordinates are fully functional and the list expands
continuously.

Many nodes share a major part of their properties. For example, nearly half of it may
contain DimensionalUnits and DataClass subnodes, and nearly all may contain Descriptor
subnodes and an Ordinal. To avoid duplication of all this commonality, inheritance is used
heavily. However, this should be regarded as an implementation detail only. The only
inheritance intentionally supported is the derivation of all hierarchical node classes from
the base Node class, which provides basic functionality as Descriptor and Ordinal subnodes.
Strictly speaking, Ordinal subnodes are not allowed to be attached to any node, but we

11



decided not to complicate the design by specifically disabling that feature for some nodes.
Probably it does no harm if there is an Ordinal subnode even if it does not belong there.

Some intermediate classes provide functionality shared by several nodes. Dimensioned,
for example, handles DimensionalUnits and DataClass subnodes, Stated additionally Ref-
erenceState subnodes and Arrayed is responsible for DataArray subnodes. As said before,
these are implementation details and are subject to change without notice. There does
even exist an idiom which disables any direct access to the intermediate classes, but it is
still an open question whether this trick is sanctioned by the C++ standard and therefore
we cannot portably use it.

Most of the child nodes are either optional or even have arbitrary cardinality. To
ease maintenance we create the function interfaces required for access to child nodes (like
hasXXX, getXXX, getNumXXX, deleteXXX and so on) by using preprocessor macros. In
the same way we use macros to provide implementations for these functions as far as
possible. However, some functions require special behaviour and are therefore written by
hand. Although preprocessor macros are usually regarded as an inferior mechanism, in
this case they act as some kind of code generator and help to reduce the development
and even more the debugging effort required. As development proceeds these macros are
refined as required and the improved functionality is immediately available for all classes
using the macros. Since there are 30 or so classes, each having very similar functionality
(access to several child nodes of some types and possibly some data values), a change in
the implementation would be quite tedious to apply to each one separately without those
macros. Additionally there is alway the risk not to do it properly in one case or the other
or simply forget one. As an additional bonus the source code is much more compact and
simpler to read and understand.

6 Documentation

The documentation for the proposed library is already in development. A great help with
this important part of the software is a tool to extract (most of) the documentation from
the source code itself. This way documentation and implementation are kept close together,
which aids in the tedious task of keeping them consistent, accurate and up-to-date. We
use doxygen for this purpose, which is probably the most evolved tool for this job. It is
able to create documentation in various formats, including HTML (for online viewing),
RTF (Word), LATEX(for printing), troff (man pages) and even XML (for post-processing).
Support for this tool is excellent and the current version is quite stable and reliable. There
is some room for improvement for our special requirements, but we hope to get them
included in the near future. Currently the reference manual consists of 135 pages showing
all accessible types, functions, classes and methods of the library and includes an index for
simple retrieval.

Despite the importance of a reference manual, a user’s guide and especially examples
are sometimes even more helpful, particularly for beginners. In order to provide them
some material, we include even at this early stage some examples, which show typical

12



application uses of the library. They are selected according to the examples set out in
the existing User’s Guide to CGNS and could be incorporated there easily. Of course
they are included in the test suite, which is highly automated to support the development
of the library. The test suite evolves together with the library to be sure to test all the
functionality available.

7 Status and Outlook

As said before several times, the described functionality is not fully available yet. Never-
theless, the work already done expands daily and we expect a full implementation of all the
SIDS by the end of this year. An experimental version with the most important features
will be made available on the day before the telecon, together with some examples to show
the use of the library as well as the simplified programming with a truly OO interface.

We have access to Linux, IRIX, Solaris, HP/UX, IBM/AIX, Cray T3E and NEC SX. As
soon as the needed features are implemented, porting to these platforms will begin. As
for now, a pretty decent C++ compiler is required. As development platform we use GNU
C++ 3.0.2 on Linux (IA32), but the compilers from Comeau and KAI should be able to
handle the code as well. In the porting process the requirements on the compiler probably
will be relaxed. We will keep you informed about the progress.

A lively discussion about the aspects described in this document is most welcome. We
kindly ask for input from experts in library design and C++, and application programmers,
as well, as they are the intended users. Although it will most certainly prove impossible
to satisfy everybody’s needs and ideas, we can hopefully reach a sensible consensus.

13


